share:

黃千芬

教授

現任所長

歷屆所長 海洋物理組

  • 專長領域

    水聲海洋學、被動音測學、計算海洋聲學、陣列訊號處理

  • 學經歷

    • 2019/08-迄今 國立臺灣大學海洋研究所 教授
    • 2014/08-2019/07 國立臺灣大學海洋研究所 副教授
    • 2008/08-2014/07 國立臺灣大學海洋研究所 助理教授
    • 2007/07-2007/08 美國加州大學聖地牙哥分校 史奎普斯海洋研究院 客座學者
    • 2007/02-2008/07 國立臺灣海洋大學海洋環境資訊系 助理教授
    • 2005/10-2007/01 美國加州大學聖地牙哥分校 史奎普斯海洋研究院 博士後
    • 2000/09-2005/09 美國加州大學聖地牙哥分校 史奎普斯海洋研究院 博士
    • 1997/08-1998/07 國立中山大學海下技術研究所 碩士
    • 1995/08-1997/07 國立中山大學海洋環境研究所 碩士
    • 1991/08-1995/07 國立中山大學海洋環境學系 學士

  • 榮譽

    • 2021, 2022, 2024 國立臺灣大學績優教研人員
    • 2019 美國聲學學會 會士
    • 2019 美國聲學學會 Medwin prize
    • 2019 中華民國海洋及水下技術協會,海下技術獎章
    • 2012, 2018 國立臺灣大學教學優良獎

教學

水聲海洋學一、二、自主海洋感知、計算海洋聲學與訊號處理、基礎海洋統計

著作

  • Taniguchi*, N., Mutsuda, H., Arai, M., Sakuno, Y., Hamada, K., Huang, C.-F., Guo, J., Takahashi, T., Yoshiki, K., and Yamamoto, H. (2024). Application of coastal acoustic tomography: calibration of open boundary conditions on a numerical ocean model for tidal currents. Frontiers in Marine Science, 11. https://doi.org/10.3389/fmars.2024.1351390
  • Zheng*, Z.-W., Lin, J.-Y., Gopalakrishnan, G., Chen, Y.-R., Doong, D.-J., Ho, C.-R., Zheng, Q., Wu, C.-R., and Huang, C.-F. (2023). Extreme cooling of 12.5 C triggered by Typhoon Fungwong (2008). Ocean Modelling, 182:102176. https://doi.org/10.1016/j.ocemod.2023.102176
  • Chen, K., Huang*, C.-F., Zheng, Z.-W., Lin, S.-F., Liu, J.-Y., and Guo, J. (2023). Optimum estimation of coastal currents using moving vehicles. Journal of Atmospheric and Oceanic Technology, 40(12):1431 – 1441. https://doi.org/10.1175/JTECH-D-23-0039.1
  • Chen, T.-T., Huang, C.-F., Su*, C.-C., Liu, C.-S., Hsu, H.-H., Hsu, S.-T., and Liu, J.-Y. (2022). Application of acoustic classification in different sedimentary environments: A case study of the Gaoping slope in the southwest coast of Taiwan. Journal of Asian Earth Sciences, 237:105347. https://doi.org/10.1016/j.jseaes.2022.105347
  • Taniguchi*, N., Takahashi, T., Yoshiki, K., Yamamoto, H., Hanifa, A. D., Sakuno, Y., Mutsuda, H., Huang, S.-W., Huang, C.-F., and Guo, J.-H. (2021). A reciprocal acoustic transmission experiment for precise observations of tidal currents in a shallow sea. Ocean Engineering, 219:108292. https://doi.org/10.1016/j.oceaneng.2020.108292
  • Fang, W.-P., Wu, D.-R., Zheng*, Z.-W., Gopalakrishnan, G., Ho, C.-R., Zheng, Q., Huang, C.-F., Ho, H., and Weng, M.-C. (2021). Impacts of the Kuroshio intrusion through the Luzon Strait on the local precipitation anomaly. Remote Sensing, 13(6):1113. https://doi.org/10.3390/rs13061113
  • Yen, W.-K., Huang*, C.-F., Chang, H.-R., and Guo, J. (2021). Localization of a leading robotic fish using a pressure sensor array on its following vehicle. Bioinspiration & Biomimetics, 16(1):016007. https://doi.org/10.1088/1748-3190/abb0cc
  • Chen, K., Huang*, C.-F., Huang, S.-W., Liu, J.-Y., and Guo, J. (2020). Mapping coastal circulations using moving vehicle acoustic tomography. J. Acoust. Soc. Am., 148(4):EL353–EL358. https://doi.org/10.1121/10.0002031
  • Chen, M., Syamsudin, F., Kaneko*, A., Gohda, N., Howe, B. M., Mutsuda, H., Dinan, A. H., Zheng, H., Huang, C.-F., Taniguchi, N., Zhu, X., Adityawarman, Y., Zhang, C., and Lin, J. (2020). Real-time offshore coastal acoustic tomography enabled with mirror-transpond functionality. IEEE J. Ocean. Eng., 45(2):645–655. https://doi.org/10.1109/JOE.2018.2878260
  • Huang*, C.-F., Li, Y.-W., and Taniguchi, N. (2019). Mapping of ocean currents in shallow water using moving ship acoustic tomography. J. Acoust. Soc. Am., 145(2):858–868. https://doi.org/10.1121/1.5090496
  • Taniguchi, N., Huang*, C.-F., Arai, M., and Howe, B. M. (2018). Variation of residual current in the Seto Inland Sea driven by sea level difference between the Bungo and Kii Channels. J. Geophys. Res. Oceans, 123:2921–2933. https://doi.org/10.1029/2017JC013618
  • Yang*, T. C., Huang, C.-F., Huang, S. H., and Liu, J.-Y. (2017). Frequency striations induced by moving nonlinear internal waves and applications. IEEE J. Ocean. Eng., 42(3):663–671. https://doi.org/10.1109/JOE.2016.2593865
  • Chen, C.-W., Huang*, C.-F., Lin, C.-W., and Kuo, B.-Y. (2017). Hydroacoustic ray theory-based modeling of T wave propagation in the deep ocean basin offshore eastern Taiwan. Geophysical Research Letters, 44(10):4799–4805. 2017GL073516. https://doi.org/10.1002/2017GL073516
  • Huang*, C.-F., Taniguchi, N., Chen, Y.-H., and Liu, J.-Y. (2016). Estimating temperature and current using a pair of transceivers in a harbor environment. J. Acoust. Soc. Am., 140(1):EL137– EL142. https://doi.org/10.1121/1.4959069
  • Taniguchi, N. and Huang*, C.-F. (2014). Simulated tomographic reconstruction of ocean current profiles in a bottom-limited sound channel. J. Geophys. Res. Oceans, 119(8):4999–5016. https://doi.org/10.1002/ 2014JC009885
  • Huang, C.-F., Yang*, T. C., Liu, J.-Y., and Schindall, J. (2013). Acoustic mapping of ocean currents using networked distributed sensors. J. Acoust. Soc. Am., 134(3):2090–2105. https://doi.org/10.1121/1.4817835
  • Taniguchi, N., Huang*, C.-F., Kaneko, A., Liu, C.-T., Howe, B. M., Wang, Y.-H., Yang, Y., Lin, J., Zhu, X.-H., and Gohda, N. (2013). Measuring the Kuroshio Current with ocean acoustic tomography. J. Acoust. Soc. Am., 134(4):3272–3281. https://doi.org/10.1121/1.4818842
  • Huang, S. H., Yang*, T. C., and Huang, C.-F. (2013). Multipath correlations in underwater acoustic communication channels. J. Acoust. Soc. Am., 133(4):2180–2190. https://doi.org/10.1121/1.4792151
  • Yang*, T. C., Schindall, J., Huang, C.-F., and Liu, J.-Y. (2012). Clutter reduction using Doppler sonar in a harbor environment. J. Acoust. Soc. Am., 132(5):3053–3067. https://doi.org/10.1121/1.4756921
  • Huang, C.-F., Yang, S.-F., and Liu*, J.-Y. (2012). Inverting sediment sound speed profile using a parameterized geoacoustic model: Numerical and statistical analysis. Journal of Marine Science and Technology, 20(5):584–594. https://doi.org/10.6119/JMST-012-0712-1
  • Huang*, C.-F., Gerstoft, P., and Hodgkiss, W. S. (2009). Statistical estimation of source location in presence of geoacoustic inversion uncertainty. J. Acoust. Soc. Am., 125(4):EL171–176. AIP Conf. Proc. 1272, 353–359 (2010) https://doi.org/10.1063/1.3493086
  • Huang*, C.-F., Gerstoft, P., and Hodgkiss, W. S. (2008). Effect of ocean sound speed uncertainty on matched-field geoacoustic inversion. J. Acoust. Soc. Am., 123(6):EL162–EL168. https://doi.org/10.1121/1.2908406
  • Gerstoft*, P., Hodgkiss, W. S., Siderius, M., Huang, C.-F., and Harrison, C. H. (2008). Passive fathometer processing. J. Acoust. Soc. Am., 123(3):1297–1305. https://doi.org/10.1121/1.2831930
  • Huang*, C.-F., Gerstoft, P., and Hodgkiss, W. S. (2007). On the effect of error correlation on matched-field geoacoustic inversion. J. Acoust. Soc. Am., 121(2):EL64–EL69. https://doi.org/10.1121/1.2424267
  • Goh*, Y. H., Gerstoft, P., Hodgkiss, W. S., and Huang, C.-F. (2007). Statistical estimation of transmission loss from geoacoustic inversion using a towed array. J. Acoust. Soc. Am., 122(5):2571–2579. https://doi.org/10.1121/1.2782915
  • Gerstoft*, P., Huang, C.-F., and Hodgkiss, W. S. (2006). Estimation of transmission loss in the presence of geoacoustic inversion uncertainty. IEEE J. Ocean. Eng., 31(2):299–307. https://doi.org/10.1109/JOE.2006.875104
  • Huang*, C.-F., Gerstoft, P., and Hodgkiss, W. S. (2006). Uncertainty analysis in matched-field geoacoustic inversions. J. Acoust. Soc. Am., 119(1):197–207. https://doi.org/10.1121/1.2139075
  • Huang*, C.-F., Gerstoft, P., and Hodgkiss, W. S. (2006). Validation of statistical estimation of transmission loss in the presence of geoacoustic inversion uncertainty. J. Acoust. Soc. Am., 120(4):1932–1941. https://doi.org/10.1121/1.2261356
  • Huang*, C.-F. and Hodgkiss, W. S. (2004). Matched field geoacoustic inversion of low frequency source tow data from the ASIAEX East China Sea experiment. IEEE J. Ocean. Eng., 29(4):952–963. https://doi.org/10.1109/JOE.2004.836989
  • Liu*, J.-Y., Huang, C.-F., and Hsueh, P.-C. (2002). Acoustic plane-wave scattering from a rough surface over a random fluid medium. Ocean Engineering, 29(8):915–930. https://doi.org/10.1016/S0029-8018(01)00056-7
  • Liu*, J.-Y., Hsueh, P.-C., and Huang, C.-F. (2002). Coherent reflection of acoustic plane wave from a rough seabed with random sediment layer overlying an elastic basement. IEEE J. Ocean. Eng., 27(4):853–861. https://doi.org/10.1109/JOE.2002.804061
  • Chen*, B.-F. and Huang, C.-F. (2002). Hydrodynamic forces on concrete sea wall and breakwater during earthquake: effects of bottom sediment layers and back-fill soil. Ocean Engineering, 29(7):783–814. https://doi.org/10.1016/S0029-8018(01)00045-2
  • Liu*, J.-Y. and Huang, C.-F. (2001). Acoustic plane-wave interaction with a randomly inhomogeneous slab bounded by rough surfaces. J. Sound Vib., 241(3):441–457. https://doi.org/10.1006/jsvi.2000.3304
  • Liu*, J.-Y. and Huang, C.-F. (2001). Acoustic plane-wave reflection from a rough surface over a random fluid half-space. Ocean Engineering, 28(7):751–762. https://doi.org/10.1016/S0029-8018(00)00029-9
  • Liu*, J.-Y. and Huang, C.-F. (2001). Acoustic plane-wave scattering from a rough interface over an inhomogeneous transition fluid layer. Ocean Engineering, 28(6):603–619. https://doi.org/10.1016/S0029-8018(00)00020-2
  • Liu*, J.-Y. and Huang, C.-F. (2001). Effects of medium inhomogenieties on surface-generated ambient noise. Proc. Natl. Sci. Counc. ROC(A), 25(1):45–52.
  • Liu*, J.-Y., Huang, C.-F., and Shyue, S. W. (2001). Effects of seabed properties on acoustic wave fields in a seismo-acoustic ocean waveguide. Ocean Engineering, 28:1437–1459. https://doi.org/10.1016/S0029-8018(01)00007-5
  • Liu*, J.-Y., Wang, C.-C., and Huang, C.-F. (2000). Coherent reflection from a rough inter- face over an inhomogeneous transition fluid layer. J. Comput. Acoust., 8(3):401–414. https://doi.org/10.1142/S0218396X00000261
  • Liu*, J.-Y. and Huang, C.-F. (1999). Surface-generated noise in an ocean waveguide with a transition layer of continuously varying density and sound speed. J. Comput. Acoust., 7(4):253–269. https://doi.org/10.1142/S0218396X99000175
  • Chen*, B.-F. and Huang, C.-F. (1997). Nonlinear hydrodynamic pressures generated by a moving high-rise offshore cylinder. Ocean Engineering, 24(3):201 – 216. https://doi.org/10.1016/S0029-8018(96)00022-4